- 1 Fig. 3.1 provides information about the blood pressure in different parts of the mammalian blood circulatory system.
 - Fig. 3.1 also shows the **total** cross-sectional area of the vessels, relative to one another, in parts of the blood circulatory system.

Fig. 3.1

(a) Place a tick (✓) in the box below that most closely describes the mammalian blood circulatory system.

	open circulatory system	closed circulatory system
single circulatory system		
double circulatory system		

(b)	The	pressure fluctuates as the blood flows along the aorta, as shown in Fig. 3.1.
	(i)	Explain what causes this fluctuation.
		[2]
	(ii)	State the term used to describe the number of fluctuations per minute.
		[1]
(c)		ng the information in Fig. 3.1, describe the pressure changes in the blood as it flows ugh the circulatory system from the aorta to the veins.
		[3]
(d)	(i)	Using the information in Fig. 3.1, explain what causes the overall change in pressure as blood flows from the aorta to the arteries and from the arteries to the capillaries.

(ii)	Explain why it is important that the pressure changes as blood flows from the aorta to the capillaries.
	[2]
	[Total: 11]

- 2 Three examples of fluids in the mammalian body are blood, tissue fluid and
- (a) Complete Table 3.1 below comparing different features of arterial blood, tissue fluid and lymph.

Table 3.1

feature	arterial blood	tissue fluid	lymph
hydrostatic pressure		low	
presence of large proteins	yes		
presence of neutrophils	yes		
presence of erythrocytes			no

ſ	1	ľ
ı	4	1

- **(b)** In a closed circulatory system, blood is kept inside blood vessels.
 - (i) Suggest two advantages of keeping the blood inside vessels.

1	
2	
_	
	101

(ii)	Describe and explain how the wall of an artery is adapted both to withstand and maintain high hydrostatic pressure.
	In your answer you should use appropriate technical terms, spelt correctly.
	to withstand pressure
	to maintain pressure
	[5]
	[0]

[Total: 11]

- 3 Large animals, such as mammals, need efficient transport systems.
 - (a) Fig. 3.1 shows a section through the mammalian heart.

Fig. 3.1

(i)	Name the parts labelled X , Y and Z .	
	X	
	Υ	
	z	[3]
(ii)	Explain why the wall of the left ventricle is thicker than the wall of the left atrium.	
		[3]

	(111)	(bicuspid) valve.	in the heart bring about the closure of the athoventricular
			[2]
(b)	The	mammalian transport system is	s a double circulatory system.
		efficient circulatory system cor sport medium and exchange su	nsists of a pump, a means of maintaining pressure, a rfaces.
	State	e the component of the mamm	alian circulatory system that fulfils each of these roles.
	The	first one has been done for you	
	pum	р	heart
	mea	ns of maintaining pressure	
	trans	sport medium	
	exch	ange surface	[3]
			[Total: 11]

Physics And Maths Tutor.com

Read the following passage and complete each sentence by writing the most appropriate term or phrase in the spaces provided.		
Large, active organisms need a circulatory system because they have a small		
Haemoglobin is a pigment found in red blood cells. These cells are also known as		
for oxygen. In the		
lungs, the haemoglobin associates with oxygen to form		
In respiring tissues, the oxygen is released by dissociation. In very active tissues, the amount of		
oxygen released can be increased by the presence of more		
This is called the effect. [6]		
[Total: 6]		

4

Fig. 2.1

- - (c) The red colouration of the red blood cells is caused by the pigment haemoglobin. The main function of haemoglobin is to transport oxygen in the form of oxyhaemoglobin.

(ii) a transmission electron microscope.

Fig. 2.2 shows the dissociation curves of adult oxyhaemoglobin (curve $\bf A$) and fetal oxyhaemoglobin (curve $\bf F$).

.....[2]

Fig. 2.2

		lain why the curve for fetal oxyhaemoglobin is to the left of the curve for adult naemoglobin.
	Ø	In your answer you should use appropriate technical terms, spelt correctly.
		[4]
d)		igh partial pressures of carbon dioxide, the oxyhaemoglobin dissociation curve undergoes nange known as the Bohr shift.
	(i)	Draw a curve on Fig. 2.2 to show the effect of the Bohr shift. [2]
	(ii)	Outline the benefits of the Bohr shift to actively respiring tissue.
		PA1
		[2]
		[Total: 12]